Importance of bulk states for the electronic structure of semiconductor surfaces: implications for finite slabs.

نویسندگان

  • Keisuke Sagisaka
  • Jun Nara
  • David Bowler
چکیده

We investigate the influence of slab thickness on the electronic structure of the Si(1 0 0)- p([Formula: see text]) surface in density functional theory (DFT) calculations, considering both density of states and band structure. Our calculations, with slab thicknesses of up to 78 atomic layers, reveal that the slab thickness profoundly affects the surface band structure, particularly the dangling bond states of the silicon dimers near the Fermi level. We find that, to precisely reproduce the surface bands, the slab thickness needs to be large enough to completely converge the bulk bands in the slab. In the case of the Si(1 0 0) surface, the dispersion features of the surface bands, such as the band shape and width, converge when the slab thickness is larger than 30 layers. Complete convergence of both the surface and bulk bands in the slab is only achieved when the slab thickness is greater than 60 layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Investigation for Electronics Structure of Mg(Bio2)2 Semiconductor Using First Principle Approach

The Mg(BiO2)2 is the orthorhombic crystal system acting as semiconductor in electric devices. To evaluate electronic band structures, the total density of state (TDOS) and the partial density of state (PDOS), Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE0) was used for Mg(BiO2)2. The band gap was recorded at 0.959 eV, which is supported by a good semiconducto...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Calculation for Energy of (111) Surfaces of Palladium in Tight Binding Model

In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...

متن کامل

بررسی ویژگی‌های ساختاری، الکترونی و اپتیکی ترکیب BSb در حالت سطح (110) و انبوهه با استفاده از مفاهیم اولیه

In recent work the structural, electronic and optical properties of BSb compound in bulk and surface (110) states have been studied. Calculations have been performed using Full-Potential Augmented Plane Wave (FP-LAPW) method by WIEN2k code in Density Functional Theory (DFT) framework. The structural properties of the bulk such as lattice constant, bulk module and elastic constants have been inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 29 14  شماره 

صفحات  -

تاریخ انتشار 2017